Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA.

نویسندگان

  • Carla A Theimer
  • L David Finger
  • Lukas Trantirek
  • Juli Feigon
چکیده

Autosomal dominant dyskeratosis congenita (DKC), as well as aplastic anemia, has been linked to mutations in the RNA component of telomerase, the ribonucleoprotein responsible for telomere maintenance. Here we examine the effect of the DKC mutations on the structure and stability of human telomerase RNA pseudoknot and CR7 domains by using NMR and thermal melting. The CR7 domain point mutation decreases stability and alters a conserved secondary structure thought to be involved in human telomerase RNA accumulation in vivo. We find that pseudoknot constructs containing the conserved elements of the pseudoknot domain are in equilibrium with a hairpin conformation. The solution structure of the wild-type hairpin reveals that it forms a continuous helix containing a novel run of three consecutive U.U and a U.C base pairs closed by a pentaloop. The six base pairs unique to the hairpin conformation are phylogenetically conserved in mammals, suggesting that this conformation is also functionally important. The DKC mutation in the pseudoknot domain results in a shift in the equilibrium toward the hairpin form, primarily due to destabilization of the pseudoknot. Our results provide insight into the effect of these mutations on telomerase structure and suggest that the catalytic cycle of telomerase involves a delicate interplay between RNA conformational states, alteration of which leads to the disease state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyskeratosis congenita mutations in dyskerin SUMOylation consensus sites lead to impaired telomerase RNA accumulation and telomere defects.

Mutations in the dyskerin gene (DKC1) cause X-linked dyskeratosis congenita (DC), a rare and fatal premature aging syndrome characterized by defective telomere maintenance. Dyskerin is a highly conserved nucleolar protein, and a component of the human telomerase complex that is essential for human telomerase RNA (hTR) stability. However, its regulation remains poorly understood. Here, we report...

متن کامل

A molecular switch underlies a human telomerase disease.

Telomerase is a ribonucleoprotein (RNP) required for maintenance of telomeres. Although up-regulated telomerase activity is closely linked to the cellular immortality characteristic of late stage carcinogenesis, recently, mutations in the telomerase RNA gene in humans have been associated with dyskeratosis congenita and aplastic anemia, both typified by impaired haemopoietic function. These mut...

متن کامل

The accumulation and not the specific activity of telomerase ribonucleoprotein determines telomere maintenance deficiency in X-linked dyskeratosis congenita.

X-linked dyskeratosis congenita (X-DC) is caused by mutations in the housekeeping nucleolar protein dyskerin. Amino acid changes associated with X-DC are remarkably heterogeneous. Peripheral mononuclear blood cells and fibroblasts isolated from X-DC patients harbor lower steady-state telomerase RNA (TER) levels and shorter telomeres than healthy age-matched controls. Previously, we showed that ...

متن کامل

Decreased dyskerin levels as a mechanism of telomere shortening in X-linked dyskeratosis congenita

Dyskeratosis congenita (DC) is a premature ageing syndrome characterised by short telomeres. An X-linked form of DC is caused by mutations in DKC1 which encodes dyskerin, a telomerase component that is essential for telomerase RNA stability. However, mutations in DKC1 are identifiable in only half of X-linked DC families. A four generation family with pulmonary fibrosis and features of DC was i...

متن کامل

Single-Molecule Analysis of the Human Telomerase RNA·Dyskerin Interaction and the Effect of Dyskeratosis Congenita Mutations†

It has been proposed that human telomerase RNA (hTR) interacts with dyskerin, prior to assembly of the telomerase holoenzyme. The direct interaction of dyskerin and hTR has not been demonstrated and is an experimentally challenging research problem because of difficulties in expressing and purifying dyskerin in quantities that are useful for biophysical analysis. By orthogonally labeling dysker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2003